GETTING READY FOR A-LEVEL MATHEMATICS:

Examples, Practice Questions & Answers:

10 Bridging Topics to prepare you for A level Maths:

- 1. Expanding brackets and simplifying expressions
- 2. Rearranging equations
- 3. Rules of indices
- 4. Factorising expressions
- 5. Completing the square
- 6. Solving quadratic equations
- 7. Solving linear simultaneous equations
- 8. Linear inequalities
- 9. Straight line graphs
- 10. Trigonometry

Expanding brackets and simplifying expressions

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- When you expand one set of brackets you must multiply everything inside the bracket by what is outside.
- When you expand two linear expressions, each with two terms of the form *ax* + *b*, where *a* ≠ 0 and *b* ≠ 0, you create four terms. Two of these can usually be simplified by collecting like terms.

Examples

Example 1 Expand 4(3x - 2)

4(3x-2) = 12x - 8	Multiply everything inside the bracket by the 4 outside the bracket
-------------------	--

Example 2 Expand and simplify 3(x + 5) - 4(2x + 3)

3(x+5) - 4(2x+3) = 3x + 15 - 8x - 12	1 Expand each set of brackets separately by multiplying $(x + 5)$ by 3 and $(2x + 3)$ by -4
= 3 - 5x	2 Simplify by collecting like terms: 3x - 8x = -5x and $15 - 12 = 3$

Example 3 Expand and simplify (x + 3)(x + 2)

(x + 3)(x + 2) = x(x + 2) + 3(x + 2)	1 Expand the brackets by multiplying $(x + 2)$ by x and $(x + 2)$ by 3
$=x^{2}+2x+3x+6$	
$= x^2 + 5x + 6$	2 Simplify by collecting like terms: 2x + 3x = 5x

Example 4 Expand and simplify (x - 5)(2x + 3)

(x-5)(2x+3) = x(2x+3) - 5(2x+3)	1 Expand the brackets by multiplying $(2x + 3)$ by x and $(2x + 3)$ by -5
$= 2x^{2} + 3x - 10x - 15$ $= 2x^{2} - 7x - 15$	2 Simplify by collecting like terms:
	3x - 10x = -7x

1	Exp	and.			Watch out!
	a	3(2x-1)	b	$-2(5pq+4q^2)$	When multiplying (or
	С	$-(3xy-2y^2)$			dividing) positive and
2	Exp	and and simplify.			negative numbers, if
	a	7(3x+5) + 6(2x-8)	b	8(5p-2) - 3(4p+9)	the signs are the same
	c	9(3s+1) - 5(6s-10)	d	2(4x-3) - (3x+5)	signs are different the
•	г				answer is $(-)$
3	Exp	and. $2\pi(4\pi + 8)$	L	AL(512, 12)	
	a	3x(4x+8)	D d	$4K(5K^2 - 12)$ $2s(4s^2 - 7s + 2)$	
	C	$-2n(6n^2 + 11n - 5)$	a	$-5S(4S^2 - 7S + 2)$	
4	Exp	and and simplify.			
	a	$3(y^2 - 8) - 4(y^2 - 5)$	b	2x(x+5) + 3x(x-7)	
	c	4p(2p-1) - 3p(5p-2)	d	3b(4b-3) - b(6b-9)	
5*	Exp	pand $\frac{1}{2}(2y-8)$			
6*	Exp	and and simplify.		2	
	a	13 - 2(m + 7)	b	$5p(p^2+6p)-9p(2p-3)$	
7*	The	diagram shows a rectangle			
-	Wri	te down an expression, in terms of <i>z</i>	x, for	the area of	
	the	rectangle.		3x - 5	
	Sho	w that the area of the rectangle can 25	be w	ritten as	
	21x	-35x			7x
8*	Exp	and and simplify			
U	а.	(x + 4)(x + 5)	b	(x+7)(x+3)	
	c	(x+7)(x-2)	d	(x+5)(x-5)	
	e	(2x+3)(x-1)	f	(3x-2)(2x+1)	
	g	(5x-3)(2x-5)	h	(3x-2)(7+4x)	
	i	(3x+4y)(5y+6x)	j	$(x+5)^2$	
	k	$(2x-7)^2$	1	$(4x-3y)^2$	
Ex	ten	d			
9*	Exp	and and simplify $(x + 3)^2 + (x - 4)^2$			
	-				
10*	Exp	and and simplify.			

a
$$\left(x+\frac{1}{x}\right)\left(x-\frac{2}{x}\right)$$
 b $\left(x+\frac{1}{x}\right)^2$

Answers

1	a	6x - 3	b	$-10pq - 8q^2$
	c	$-3xy + 2y^2$		
2	a	21x + 35 + 12x - 48 = 33x - 13		
	b	40p - 16 - 12p - 27 = 28p - 43		
	с	27s + 9 - 30s + 50 = -3s + 59 = 5	9 – 3	S
	d	8x - 6 - 3x - 5 = 5x - 11		
3	a	$12x^2 + 24x$	b	$20k^3 - 48k$
	c	$10h - 12h^3 - 22h^2$	d	$21s^2 - 21s^3 - 6s$
4	a	$-y^2 - 4$	b	$5x^2 - 11x$
	c	$2p - 7p^2$	d	$6b^2$
5	у —	4		
6	a	-1 - 2m	b	$5p^3 + 12p^2 + 27p$
-	7 ($2 \qquad 5 \qquad 21^2 \qquad 25$		
/	$T_{X}($	$(3x-5) = 21x^2 - 35x$		
8	9	$r^2 + 9r + 20$	h	$r^{2} \pm 10r \pm 21$
U	a C	$x^{2} + 5x + 20$ $x^{2} + 5r - 14$	d	$x^{2} - 25$
	د ۵	$2r^2 + r = 3$	u f	$x^{2} = x = 2$
	ι σ	2x + x = 5 $10r^2 - 31r + 15$	ı h	$3x^{2} - x - 2$ $12x^{2} + 13x - 14$
	б ;	10x - 51x + 15 $18x^2 + 39xy + 20y^2$	н ;	$r^{2} + 10r + 25$
	ւ	$4x^2 - 28x + 40$	J 1	x + 10x + 23 $16x^2 - 24xy + 0y^2$
	К	4x - 20x + 49	I	$10x - 24xy + 9y^{-1}$

9
$$2x^2 - 2x + 25$$

10 a
$$x^2 - 1 - \frac{2}{x^2}$$
 b $x^2 + 2 + \frac{1}{x^2}$

Rearranging equations

A LEVEL LINKS

Scheme of work: 6a. Definition, differentiating polynomials, second derivatives **Textbook:** Pure Year 1, 12.1 Gradients of curves

Key points

- To change the subject of a formula, get the terms containing the subject on one side and everything else on the other side.
- You may need to factorise the terms containing the new subject.

Examples

v = u + at $v - u = at$	1 Get the terms containing <i>t</i> on one side and everything else on the other side.
$t = \frac{v - u}{a}$	2 Divide throughout by <i>a</i> .

Example 2 Make *t* the subject of the formula $r = 2t - \pi t$.

$r = 2t - \pi t$	1 All the terms containing <i>t</i> are already on one side and everything else is on the other side
$r = t(2 - \pi)$	2 Factorise as <i>t</i> is a common factor.
$t = \frac{7}{2 - \pi}$	3 Divide throughout by $2 - \pi$.

Example 3 Make *t* the subject of the formula $\frac{t+r}{5} = \frac{3t}{2}$.

$\frac{t+r}{5} = \frac{3t}{2}$	1 Remove the fractions first by multiplying throughout by 10.
2t + 2r = 15t $2r = 13t$	2 Get the terms containing <i>t</i> on one side and everything else on the other side and simplify.
$t = \frac{2r}{13}$	3 Divide throughout by 13.

$r = \frac{3t+5}{t-1}$	1 Remove the fraction first by multiplying throughout by $t - 1$.
r(t-1) = 3t + 5	2 Expand the brackets.
rt - r = 3t + 5	3 Get the terms containing <i>t</i> on one
rt - 3t = 5 + r	side and everything else on the other side.
t(r-3) = 5 + r	4 Factorise the LHS as <i>t</i> is a common
$t = \frac{5+r}{r-3}$	factor. 5 Divide throughout by $r - 3$.

Example 4 Make *t* the subject of the formula $r = \frac{3t+5}{t-1}$.

Practice

Change the subject of each formula to the letter given in the brackets.

 $C = \pi d$ [d] P = 2l + 2w [w] $D = \frac{S}{T}$ [T] $p = \frac{q - r}{t}$ [t] $u = at - \frac{1}{2}t$ [t] V = ax + 4x [x] $\frac{y - 7x}{2} = \frac{7 - 2y}{3}$ [y] $x = \frac{2a - 1}{3 - a}$ [a] $x = \frac{b - c}{d}$ [d] 7 2x + 3

10 $h = \frac{7g - 9}{2 + g}$ [g] **11** e(9 + x) = 2e + 1 [e] **12** $y = \frac{2x + 3}{4 - x}$ [x]

13 Make *r* the subject of the following formulae.

a
$$A = \pi r^2$$
 b $V = \frac{4}{3}\pi r^3$ **c** $P = \pi r + 2r$ **d** $V = \frac{2}{3}\pi r^2 h$

14 Make *x* the subject of the following formulae.

a
$$\frac{xy}{z} = \frac{ab}{cd}$$
 b $\frac{4\pi cx}{d} = \frac{3z}{py^2}$

15 Make sin *B* the subject of the formula $\frac{a}{\sin A} = \frac{b}{\sin B}$

16 Make $\cos B$ the subject of the formula $b^2 = a^2 + c^2 - 2ac \cos B$.

Extend

17 Make *x* the subject of the following equations.

a
$$\frac{p}{q}(sx+t) = x-1$$

b $\frac{p}{q}(ax+2y) = \frac{3p}{q^2}(x-y)$

Answers

 $d = \frac{C}{\pi}$ $t = \frac{2u}{2a-1}$ 6 $x = \frac{V}{a+4}$ $t = \frac{q-r}{p}$ $a = \frac{3x+1}{x+2}$ 9 $d = \frac{b-c}{x}$ y = 2 + 3x $e = \frac{1}{x+7}$ **12** $x = \frac{4y-3}{2+y}$ $g = \frac{2h+9}{7-h}$ a $r = \sqrt{\frac{A}{\pi}}$ b $r = \sqrt[3]{\frac{3V}{4\pi}}$ **c** $r = \frac{P}{\pi + 2}$ **d** $r = \sqrt{\frac{3V}{2\pi h}}$ 14 a $x = \frac{abz}{cdy}$ b $x = \frac{3dz}{4\pi cny^2}$ $\sin B = \frac{b \sin A}{a}$ $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ a $x = \frac{q + pt}{q - ps}$ b $x = \frac{3py + 2pqy}{3p - apq} = \frac{y(3 + 2q)}{3 - aq}$

Rules of indices

A LEVEL LINKS

Scheme of work: 1a. Algebraic expressions – basic algebraic manipulation, indices and surds

Key points

- $a^m \times a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- $(a^m)^n = a^{mn}$
- $a^0 = 1$
- $a^{\frac{1}{n}} = \sqrt[n]{a}$ i.e. the *n*th root of *a*

Evaluate $27^{\frac{2}{3}}$

•
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^n$$

•
$$a^{-m} = \frac{1}{a^m}$$

• The square root of a number produces two solutions, e.g. $\sqrt{16} = \pm 4$.

Examples

Example 1 Evaluate 10⁰

equal to 1

Example 2 Evaluate $9^{\frac{1}{2}}$

$9^{\frac{1}{2}} = \sqrt{9}$	Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
= 3	

Example 3

 $27^{\frac{2}{3}} = (\sqrt[3]{27})^{2}$ $= 3^{2}$ = 9 **1** Use the rule $a^{\frac{m}{n}} = (\sqrt[n]{a})^{m}$ **2** Use $\sqrt[3]{27} = 3$

Example 4	Evaluate 4 ⁻²	
	$4^{-2} = \frac{1}{4^2} = \frac{1}{16}$	1 Use the rule $a^{-m} = \frac{1}{a^m}$ 2 Use $4^2 = 16$
Example 5	Simplify $\frac{6x^5}{2x^2}$	
	$\frac{6x^5}{2x^2} = 3x^3$	$6 \div 2 = 3$ and use the rule $\frac{a^m}{a^n} = a^{m-n}$ to give $\frac{x^5}{x^2} = x^{5-2} = x^3$
Example 6	Simplify $\frac{x^3 \times x^5}{x^4}$	
	$\frac{x^3 \times x^5}{x^4} = \frac{x^{3+5}}{x^4} = \frac{x^8}{x^4}$	1 Use the rule $a^m \times a^n = a^{m+n}$
	$= x^{8-4} = x^4$	2 Use the rule $\frac{a^m}{a^n} = a^{m-n}$
Example 7	Write $\frac{1}{3x}$ as a single power of x	
	$\frac{1}{3x} = \frac{1}{3}x^{-1}$	Use the rule $\frac{1}{a^m} = a^{-m}$, note that the
		fraction $\frac{1}{3}$ remains unchanged
Example 8	Write $\frac{4}{\sqrt{x}}$ as a single power of x	
	$\frac{4}{\sqrt{x}} = \frac{4}{x^{\frac{1}{2}}}$	1 Use the rule $a^{\frac{1}{n}} = \sqrt[n]{a}$
	$=4x^{-\frac{1}{2}}$	2 Use the rule $\frac{1}{a^m} = a^{-m}$

1	Evaluate.						
	a 14 ⁰	b	3 ⁰	c	5 ⁰	d	x^0
2*	Evaluate.						
	a $49^{\frac{1}{2}}$	b	$64^{\frac{1}{3}}$	c	$125^{\frac{1}{3}}$	d	$16^{\frac{1}{4}}$
3*	Evaluate.						
	a $25^{\frac{3}{2}}$	b	$8^{\frac{5}{3}}$	c	$49^{\frac{3}{2}}$	d	$16^{\frac{3}{4}}$
4*	Evaluate.						
	a 5 ⁻²	b	4 ⁻³	c	2-5	d	6-2
5*	Simplify.						
	$\mathbf{a} \frac{3x^2 \times x^3}{2x^2}$	b	$\frac{10x^5}{2x^2 \times x}$				
	$\mathbf{c} \qquad \frac{3x \times 2x^3}{2x^3}$	d	$\frac{7x^3y^2}{14x^5y}$		Watch out!		
	$\mathbf{e} \frac{y^2}{y^{\frac{1}{2}} \times y}$	f	$\frac{c^{\frac{1}{2}}}{c^2 \times c^{\frac{3}{2}}}$		Remember th any value rais the power of	at ed to zero	
	$\mathbf{g} \frac{\left(2x^2\right)^3}{4x^0}$	h	$\frac{x^{\frac{1}{2}} \times x^{\frac{3}{2}}}{x^{-2} \times x^{3}}$		is 1. This is the rule $a^0 = 1$.	e	
6*	Evaluate.						
	a $4^{-\frac{1}{2}}$	b	$27^{-\frac{2}{3}}$	c	$9^{-\frac{1}{2}} \times 2^{3}$		
	d $16^{\frac{1}{4}} \times 2^{-3}$	e	$\left(\frac{9}{16}\right)^{-\frac{1}{2}}$	f	$\left(\frac{27}{64}\right)^{-\frac{2}{3}}$		
7*	Write the following as a	a single	power of <i>x</i> .				

a $\frac{1}{x}$ **b** $\frac{1}{x^7}$ **c** $\sqrt[4]{x}$ **d** $\sqrt[5]{x^2}$ **e** $\frac{1}{\sqrt[3]{x}}$ **f** $\frac{1}{\sqrt[3]{x^2}}$ **8*** Write the following without negative or fractional powers.

a	x^{-3}	b	x^0	c	$x^{\frac{1}{5}}$
d	$x^{\frac{2}{5}}$	e	$x^{-\frac{1}{2}}$	f	$x^{-\frac{3}{4}}$

9* Write the following in the form ax^n .

a	$5\sqrt{x}$	b	$\frac{2}{x^3}$	С	$\frac{1}{3x^4}$
d	$\frac{2}{\sqrt{x}}$	e	$\frac{4}{\sqrt[3]{x}}$	f	3

Extend

10* Write as sums of powers of x.

a
$$\frac{x^5 + 1}{x^2}$$
 b $x^2\left(x + \frac{1}{x}\right)$ **c** $x^{-4}\left(x^2 + \frac{1}{x^3}\right)$

Answers

1	a	1	b	1	c	1	d	1
2	a	7	b	4	c	5	d	2
3	a	125	b	32	c	343	d	8
4	a	$\frac{1}{25}$	b	$\frac{1}{64}$	С	$\frac{1}{32}$	d	$\frac{1}{36}$
5	a	$\frac{3x^3}{2}$	b	$5x^2$				
	c	3 <i>x</i>	d	$\frac{y}{2x^2}$				
	e g	$y^{\frac{1}{2}}$ $2x^{6}$	f h	c ⁻³ x				
6	a	$\frac{1}{2}$	b	$\frac{1}{9}$	с	$\frac{8}{3}$		
	d	$\frac{1}{4}$	e	$\frac{4}{3}$	f	$\frac{16}{9}$		
7	a	x ⁻¹	b	x ⁻⁷	с	$x^{\frac{1}{4}}$		
	d	$x^{\frac{2}{5}}$	e	$x^{-\frac{1}{3}}$	f	$x^{-\frac{2}{3}}$		
8	a	$\frac{1}{x^3}$	b	1	c	$\sqrt[5]{x}$		
	d	$\sqrt[5]{x^2}$	e	$\frac{1}{\sqrt{x}}$	f	$\frac{1}{\sqrt[4]{x^3}}$		
9	a	$5x^{\frac{1}{2}}$	b	2 <i>x</i> ⁻³	с	$\frac{1}{3}x^{-4}$		
	d	$2x^{-\frac{1}{2}}$	e	$4x^{-\frac{1}{3}}$	f	$3x^0$		
10	a	$x^3 + x^{-2}$	b	$x^3 + x$	с	$x^{-2} + x^{-7}$		

Factorising expressions

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Factorising an expression is the opposite of expanding the brackets.
- A quadratic expression is in the form $ax^2 + bx + c$, where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose product is *ac*.
- An expression in the form $x^2 y^2$ is called the difference of two squares. It factorises to (x y)(x + y).

Examples

Example 1 Factorise $15x^2y^3 + 9x^4y$

the terms in the brackets

Example 2 Factorise $4x^2 - 25y^2$

Example 3 Factorise $x^2 + 3x - 10$

b = 3, ac = -10	1 Work out the two factors of ac = -10 which add to give $b = 3(5 and -2)$
So $x^2 + 3x - 10 = x^2 + 5x - 2x - 10$	 2 Rewrite the <i>b</i> term (3<i>x</i>) using these two factors
=x(x+5)-2(x+5)	3 Factorise the first two terms and the last two terms
= (x+5)(x-2)	4 $(x+5)$ is a factor of both terms

Example 4 Factorise $6x^2 - 11x - 10$

b = -11, ac = -60	1 Work out the two factors of $a_{c} = -60$ which add to give $b = -11$
So	(-15 and 4)
$6x^2 - 11x - 10 = 6x^2 - 15x + 4x - 10$	2 Rewrite the <i>b</i> term $(-11x)$ using
	these two factors
= 3x(2x-5) + 2(2x-5)	3 Factorise the first two terms and the
	last two terms
=(2x-5)(3x+2)	4 $(2x-5)$ is a factor of both terms

Simplify $\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$

$\frac{x^2 - 4x - 21}{2x^2 + 9x + 9}$	1 Factorise the numerator and the denominator
For the numerator:	2 Work out the two factors of
b = -4, ac = -21	ac = -21 which add to give $b = -4(-7 and 3)$
So	(, , , , , , , , , , , , , , , , , , ,
$x^2 - 4x - 21 = x^2 - 7x + 3x - 21$	3 Rewrite the <i>b</i> term $(-4x)$ using these two factors
=x(x-7)+3(x-7)	4 Factorise the first two terms and the
=(x-7)(x+3)	5 $(x - 7)$ is a factor of both terms
For the denominator:	6 Work out the two factors of
b = 9, ac = 18	ac = 18 which add to give $b = 9(6 and 3)$
So	
$2x^2 + 9x + 9 = 2x^2 + 6x + 3x + 9$	7 Rewrite the <i>b</i> term (9 <i>x</i>) using these two factors
= 2x(x+3) + 3(x+3)	8 Factorise the first two terms and the last two terms
= (x+3)(2x+3)	9 $(x+3)$ is a factor of both terms
r^{2} $4r$ 21 $(r$ 7) $(r+3)$	
$\frac{x^{2}-4x-21}{2x^{2}+9x+9} = \frac{(x-7)(x+3)}{(x+3)(2x+3)}$	10 $(x + 3)$ is a factor of both the numerator and denominator so
$= \frac{x-7}{2}$	cancels out as a value divided by itself is 1
2x + 3	

1*	Fac	ctorise.		
	a	$6x^4y^3 - 10x^3y^4$	b	$21a^3b^5 + 35a^5b^2$
	c	$25x^2y^2 - 10x^3y^2 + 15x^2y^3$		
2*	Fac	ctorise		
	a	$x^2 + 7x + 12$	b	$x^2 + 5x - 14$
	c	$x^2 - 11x + 30$	d	$x^2 - 5x - 24$
	e	$x^2 - 7x - 18$	f	$x^2 + x - 20$
	g	$x^2 - 3x - 40$	h	$x^2 + 3x - 28$
3*	Fac	ctorise		
	a	$36x^2 - 49y^2$	b	$4x^2 - 81y^2$
	c	$18a^2 - 200b^2c^2$		
4*	Fac	ctorise		
	9	$2r^2 + r^2$	h	$6r^2 + 17r + 5$

a	$2x^2 + x - 3$	b	$6x^2 + 17x + 5$
c	$2x^2 + 7x + 3$	d	$9x^2 - 15x + 4$
e	$10x^2 + 21x + 9$	f	$12x^2 - 38x + 20$

5* Simplify the algebraic fractions.

a	$\frac{2x^2 + 4x}{x^2 - x}$	b	$\frac{x^2+3x}{x^2+2x-3}$
c	$\frac{x^2-2x-8}{x^2-4x}$	d	$\frac{x^2 - 5x}{x^2 - 25}$
e	$\frac{x^2 - x - 12}{x^2 - 4x}$	f	$\frac{2x^2 + 14x}{2x^2 + 4x - 70}$

6* Simplify

a
$$\frac{9x^2 - 16}{3x^2 + 17x - 28}$$

b $\frac{2x^2 - 7x - 15}{3x^2 - 17x + 10}$
c $\frac{4 - 25x^2}{10x^2 - 11x - 6}$
d $\frac{6x^2 - x - 1}{2x^2 + 7x - 4}$

Extend

7* Simplify $\sqrt{x^2 + 10x + 25}$ 8* Simplify $\frac{(x+2)^2 + 3(x+2)^2}{x^2 - 4}$

Hint

Take the highest common factor outside the bracket.

Answers

1	a	$2x^3y^3(3x-5y)$	b	$7a^3b^2(3b^3+5a^2)$
	c	$5x^2y^2(5-2x+3y)$		
2	a	(x+3)(x+4)	b	(x+7)(x-2)
	c	(x-5)(x-6)	d	(x - 8)(x + 3)
	e	(x-9)(x+2)	f	(x+5)(x-4)
	g	(x-8)(x+5)	h	(x + 7)(x - 4)
3	a	(6x - 7y)(6x + 7y)	b	(2x-9y)(2x+9y)
	c	2(3a - 10bc)(3a + 10bc)		
			_	
4	a	(x-1)(2x+3)	b	(3x+1)(2x+5)
	c	(2x+1)(x+3)	d	(3x-1)(3x-4)
	e	(5x+3)(2x+3)	f	2(3x-2)(2x-5)
5	a	$\frac{2(x+2)}{1}$	b	<u>x</u>
		x-1		x-1
	с	$\underline{x+2}$	d	<u> </u>
		x		<i>x</i> +5
	e	$\underline{x+3}$	f	<u> </u>
		x		x-5
		2		2
6	a	$\frac{3x+4}{7}$	b	$\frac{2x+3}{2}$
		<i>x</i> + <i>i</i>		3x - 2
	c	$\frac{2-5x}{2-2}$	d	$\frac{3x+1}{x}$
		2x-3		x + 4

7
$$(x+5)$$

8
$$\frac{4(x+2)}{x-2}$$

Completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- Completing the square for a quadratic rearranges $ax^2 + bx + c$ into the form $p(x + q)^2 + r$
- If $a \neq 1$, then factorise using a as a common factor.

Examples

$x^2 + 6x - 2$	1 Write $x^2 + bx + c$ in the form
$=(x+3)^2-9-2$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c$
$=(x+3)^2-11$	2 Simplify

Example 1	Complete	the square	for the	quadratic	expression	$x^{2} +$	- 6 <i>x</i> –	• 2
-----------	----------	------------	---------	-----------	------------	-----------	----------------	-----

Example 2	Write $2x^2 - 5x + 1$ in the form $p(x+q)^2 + r$
-----------	--

$2x^2 - 5x + 1$	1 Before completing the square write $ax^2 + bx + c$ in the form
$= 2\left(x^2 - \frac{5}{2}x\right) + 1$	$a\left(x^{2} + \frac{b}{a}x\right) + c$ 2 Now complete the square by writing $x^{2} - \frac{5}{2}x$ in the form
$= 2\left[\left(x-\frac{5}{4}\right)^2 - \left(\frac{5}{4}\right)^2\right] + 1$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2$
$= 2\left(x - \frac{5}{4}\right)^2 - \frac{25}{8} + 1$	3 Expand the square brackets – don't forget to multiply $\left(\frac{5}{4}\right)^2$ by the
$= 2\left(x-\frac{5}{4}\right)^2 - \frac{17}{8}$	factor of 2 4 Simplify

1* Write the following quadratic expressions in the form $(x + p)^2 + q$

a	$x^2 + 4x + 3$	b	$x^2 - 10x - 3$
c	$x^2 - 8x$	d	$x^2 + 6x$
e	$x^2 - 2x + 7$	f	$x^2 + 3x - 2$

2* Write the following quadratic expressions in the form $p(x + q)^2 + r$ **a** $2x^2 - 8x - 16$ **b** $4x^2 - 8x - 16$ **c** $3x^2 + 12x - 9$ **d** $2x^2 + 6x - 8$

3* Complete the square.

a	$2x^2 + 3x + 6$	b	$3x^2 - 2x$
c	$5x^2 + 3x$	d	$3x^2 + 5x + 3$

Extend

4* Write $(25x^2 + 30x + 12)$ in the form $(ax + b)^2 + c$.

Answers

1	a	$(x+2)^2 - 1$	b	$(x-5)^2 - 28$
	c	$(x-4)^2 - 16$	d	$(x+3)^2 - 9$
	e	$(x-1)^2 + 6$	f	$\left(x+\frac{3}{2}\right)^2 - \frac{17}{4}$
2	a	$2(x-2)^2 - 24$	b	$4(x-1)^2 - 20$
	c	$3(x+2)^2 - 21$	d	$2\left(x+\frac{3}{2}\right)^2 - \frac{25}{2}$
3	a	$2\left(x+\frac{3}{4}\right)^2+\frac{39}{8}$	b	$3\left(x-\frac{1}{3}\right)^2-\frac{1}{3}$
	c	$5\left(x+\frac{3}{10}\right)^2 - \frac{9}{20}$	d	$3\left(x+\frac{5}{6}\right)^2+\frac{11}{12}$

4
$$(5x+3)^2+3$$

Solving quadratic equations by factorisation

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

- A quadratic equation is an equation in the form $ax^2 + bx + c = 0$ where $a \neq 0$.
- To factorise a quadratic equation find two numbers whose sum is *b* and whose products is *ac*.
- When the product of two numbers is 0, then at least one of the numbers must be 0.
- If a quadratic can be solved it will have two solutions (these may be equal).

Examples

Example 1 Solve $5x^2 = 15x$

$5x^2 = 15x$ $5x^2 - 15x = 0$	 Rearrange the equation so that all of the terms are on one side of the equation and it is equal to zero. Do not divide both sides by <i>x</i> as this would lose the solution <i>x</i> = 0. Extension the weaketing summaries and the solution and the second secon
5x(x-3) = 0	5 <i>x</i> is a common factor.
So $5x = 0$ or $(x - 3) = 0$	3 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = 0$ or $x = 3$	4 Solve these two equations.

Example 2 Solve $x^2 + 7x + 12 = 0$

$x^2 + 7x + 12 = 0$	1 Factorise the quadratic equation.
<i>b</i> = 7, <i>ac</i> = 12	Work out the two factors of $ac = 12$ which add to give you $b = 7$. (4 and 3)
$x^2 + 4x + 3x + 12 = 0$	2 Rewrite the <i>b</i> term $(7x)$ using these two factors.
x(x+4) + 3(x+4) = 0	3 Factorise the first two terms and the last two terms.
(x+4)(x+3) = 0	4 $(x+4)$ is a factor of both terms.
So $(x + 4) = 0$ or $(x + 3) = 0$	5 When two values multiply to make zero, at least one of the values must be zero.
Therefore $x = -4$ or $x = -3$	6 Solve these two equations.

Example 3 Solve $9x^2 - 16 = 0$

$9x^{2} - 16 = 0$	 Factorise the quadratic equation.
(3x + 4)(3x - 4) = 0	This is the difference of two squares
So (3x + 4) = 0 or (3x - 4) = 0	as the two terms are (3x) ² and (4) ² . When two values multiply to make
$x = -\frac{4}{3}$ or $x = \frac{4}{3}$	zero, at least one of the values must be zero.3 Solve these two equations.

Example 4 Solve $2x^2 - 5x - 12 = 0$

b = -5, ac = -24	1 Factorise the quadratic equation. Work out the two factors of $ac = -24$ which add to give you $b = -5$. (-8 and 3)
So $2x^2 - 8x + 3x - 12 = 0$	2 Rewrite the <i>b</i> term $(-5x)$ using these two factors.
2x(x-4) + 3(x-4) = 0	3 Factorise the first two terms and the last two terms.
(x-4)(2x+3) = 0	4 $(x-4)$ is a factor of both terms.
So $(x-4) = 0$ or $(2x+3) = 0$	5 When two values multiply to make zero, at least one of the values must
$x = 4$ or $x = -\frac{3}{2}$	be zero.6 Solve these two equations.

Practice

1* Solve **b** $28x^2 - 21x = 0$ **a** $6x^2 + 4x = 0$ **c** $x^2 + 7x + 10 = 0$ **d** $x^2 - 5x + 6 = 0$ **e** $x^2 - 3x - 4 = 0$ **f** $x^2 + 3x - 10 = 0$ \mathbf{g} $x^2 - 10x + 24 = 0$ **h** $x^2 - 36 = 0$ $i \quad x^2 + 3x - 28 = 0$ **j** $x^2 - 6x + 9 = 0$ **k** $2x^2 - 7x - 4 = 0$ 1 $3x^2 - 13x - 10 = 0$

2* Solve

- **a** $x^2 3x = 10$ **b** $x^2 - 3 = 2x$ **d** $x^2 - 42 = x$ c $x^2 + 5x = 24$ **e** x(x+2) = 2x + 25**f** $x^2 - 30 = 3x - 2$ **g** $x(3x+1) = x^2 + 15$

 - **h** 3x(x-1) = 2(x+1)
- Hint
- Get all terms onto one side of the

Solving quadratic equations by completing the square

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Completing the square lets you write a quadratic equation in the form $p(x + q)^2 + r = 0$.

Examples

Example 5 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$x^2 + 6x + 4 = 0$	1 Write $x^2 + bx + c = 0$ in the form
$(x+3)^2 - 9 + 4 = 0$	$\left(x+\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = 0$
$(x+3)^2 - 5 = 0$	2 Simplify.
$(x+3)^2 = 5$	3 Rearrange the equation to work out
	x. First, add 5 to both sides.
$x + 3 = \pm \sqrt{5}$	4 Square root both sides.
	Remember that the square root of a
	value gives two answers.
$x = \pm \sqrt{5} - 5$	5 Subtract 3 from both sides to solve
	the equation.
So $x = -\sqrt{5} - 3$ or $x = \sqrt{5} - 3$	6 Write down both solutions.

Example 6 Solve $2x^2 - 7x + 4 = 0$. Give your solutions in surd form.

$2x^{2} - 7x + 4 = 0$ $2\left(x^{2} - \frac{7}{2}x\right) + 4 = 0$	1 Before completing the square write $ax^2 + bx + c$ in the form $a\left(x^2 + \frac{b}{a}x\right) + c$
$2\left[\left(x-\frac{7}{4}\right)^2 - \left(\frac{7}{4}\right)^2\right] + 4 = 0$	2 Now complete the square by writing $x^2 - \frac{7}{2}x$ in the form $\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2$
$2\left(x-\frac{7}{4}\right)^2 - \frac{49}{8} + 4 = 0$	3 Expand the square brackets.
$2\left(x-\frac{7}{4}\right) - \frac{17}{8} = 0$	4 Simplify. <i>(continued on next page)</i>

$2\left(x-\frac{7}{4}\right)^2 = \frac{17}{8}$	5 Rearrange the equation to work out <i>x</i> . First, add $\frac{17}{8}$ to both sides.
$\left(x-\frac{7}{4}\right)^2 = \frac{17}{16}$	6 Divide both sides by 2.
$x - \frac{7}{4} = \pm \frac{\sqrt{17}}{4}$	7 Square root both sides. Remember that the square root of a value gives two answers.
$x = \pm \frac{\sqrt{17}}{4} + \frac{7}{4}$	8 Add $\frac{7}{4}$ to both sides.
So $x = \frac{7}{4} - \frac{\sqrt{17}}{4}$ or $x = \frac{7}{4} + \frac{\sqrt{17}}{4}$	9 Write down both the solutions.

3*	Sol	ve by completing the square.		
	a	$x^2 - 4x - 3 = 0$	b	$x^2 - 10x + 4 = 0$
	c	$x^2 + 8x - 5 = 0$	d	$x^2 - 2x - 6 = 0$
	e	$2x^2 + 8x - 5 = 0$	f	$5x^2 + 3x - 4 = 0$

4* Solve by completing the square.

- **a** (x-4)(x+2) = 5
- **b** $2x^2 + 6x 7 = 0$
- **c** $x^2 5x + 3 = 0$

Hint	
Get all terms	

onto one side

of the

Solving quadratic equations by using the formula

A LEVEL LINKS

Scheme of work: 1b. Quadratic functions – factorising, solving, graphs and the discriminants

Key points

• Any quadratic equation of the form $ax^2 + bx + c = 0$ can be solved using the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{ac}$

$$c = \frac{-b \pm \sqrt{b^2 - 4a}}{2a}$$

- If $b^2 4ac$ is negative then the quadratic equation does not have any real solutions.
- It is useful to write down the formula before substituting the values for *a*, *b* and *c*.

Examples

Example 7 Solve $x^2 + 6x + 4 = 0$. Give your solutions in surd form.

$a = 1, b = 6, c = 4$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-6 \pm \sqrt{6^2 - 4(1)(4)}}{2(1)}$	2 Substitute $a = 1, b = 6, c = 4$ into the formula.
$x = \frac{-6 \pm \sqrt{20}}{2}$	3 Simplify. The denominator is 2, but this is only because $a = 1$. The denominator will not always be 2.
$x = \frac{-6 \pm 2\sqrt{5}}{2}$	4 Simplify $\sqrt{20}$. $\sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5}$
$x = -3 \pm \sqrt{5}$	5 Simplify by dividing numerator and denominator by 2.
So $x = -3 - \sqrt{5}$ or $x = \sqrt{5} - 3$	6 Write down both the solutions.

$a = 3, b = -7, c = -2$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	1 Identify <i>a</i> , <i>b</i> and <i>c</i> , making sure you get the signs right and write down the formula. Remember that $-b \pm \sqrt{b^2 - 4ac}$ is all over 2 <i>a</i> , not just part of it.
$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(3)(-2)}}{2(3)}$	2 Substitute $a = 3, b = -7, c = -2$ into the formula.
$x = \frac{7 \pm \sqrt{73}}{6}$ So $x = \frac{7 - \sqrt{73}}{6}$ or $x = \frac{7 + \sqrt{73}}{6}$	 3 Simplify. The denominator is 6 when a = 3. A common mistake is to always write a denominator of 2. 4 Write down both the solutions.

Example 8 Solve $3x^2 - 7x - 2 = 0$. Give your solutions in surd form.

Practice

- 5* Solve, giving your solutions in surd form. **a** $3x^2 + 6x + 2 = 0$ **b** $2x^2 - 4x - 7 = 0$
- 6* Solve the equation $x^2 7x + 2 = 0$ Give your solutions in the form $\frac{a \pm \sqrt{b}}{c}$, where *a*, *b* and *c* are integers.
- **7*** Solve $10x^2 + 3x + 3 = 5$ Give your solution in surd form.

Hint
Get all terms onto one side of the equation.

Extend

- **8*** Choose an appropriate method to solve each quadratic equation, giving your answer in surd form when necessary.
 - **a** 4x(x-1) = 3x-2
 - **b** $10 = (x+1)^2$
 - **c** x(3x-1) = 10

Answers

1 a
$$x = 0$$
 or $x = -\frac{2}{3}$
b $x = 0$ or $x = \frac{3}{4}$
c $x = -5$ or $x = -2$
d $x = 2$ or $x = 3$
e $x = -1$ or $x = 4$
f $x = -5$ or $x = 2$
g $x = 4$ or $x = 6$
i $x = -7$ or $x = 4$
k $x = -\frac{1}{2}$ or $x = 4$
i $x = -\frac{2}{3}$ or $x = 5$

2 **a**
$$x = -2$$
 or $x = 5$
b $x = -1$ or $x = 3$
c $x = -8$ or $x = 3$
d $x = -6$ or $x = 7$
e $x = -5$ or $x = 5$
f $x = -4$ or $x = 7$
g $x = -3$ or $x = 2\frac{1}{2}$
h $x = -\frac{1}{3}$ or $x = 2$

3 a
$$x = 2 + \sqrt{7}$$
 or $x = 2 - \sqrt{7}$ **b** $x = 5 + \sqrt{21}$ or $x = 5 - \sqrt{21}$
c $x = -4 + \sqrt{21}$ or $x = -4 - \sqrt{21}$ **d** $x = 1 + \sqrt{7}$ or $x = 1 - \sqrt{7}$
e $x = -2 + \sqrt{6.5}$ or $x = -2 - \sqrt{6.5}$ **f** $x = \frac{-3 + \sqrt{89}}{10}$ or $x = \frac{-3 - \sqrt{89}}{10}$

4 a
$$x = 1 + \sqrt{14}$$
 or $x = 1 - \sqrt{14}$
c $x = \frac{5 + \sqrt{13}}{2}$ or $x = \frac{5 - \sqrt{13}}{2}$

b
$$x = \frac{-3 + \sqrt{23}}{2}$$
 or $x = \frac{-3 - \sqrt{23}}{2}$
b $x = 1 + \frac{3\sqrt{2}}{2}$ or $x = 1 - \frac{3\sqrt{2}}{2}$

5 **a**
$$x = -1 + \frac{\sqrt{3}}{3}$$
 or $x = -1 - \frac{\sqrt{3}}{3}$

6
$$x = \frac{7 + \sqrt{41}}{2}$$
 or $x = \frac{7 - \sqrt{41}}{2}$

7
$$x = \frac{-3 + \sqrt{89}}{20}$$
 or $x = \frac{-3 - \sqrt{89}}{20}$

8 **a**
$$x = \frac{7 + \sqrt{17}}{8}$$
 or $x = \frac{7 - \sqrt{17}}{8}$
b $x = -1 + \sqrt{10}$ or $x = -1 - \sqrt{10}$
c $x = -1\frac{2}{3}$ or $x = 2$

Solving linear simultaneous equations using the elimination method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous

Key points

- Two equations are simultaneous when they are both true at the same time.
- Solving simultaneous linear equations in two unknowns involves finding the value of each unknown which works for both equations.
- Make sure that the coefficient of one of the unknowns is the same in both equations.
- Eliminate this equal unknown by either subtracting or adding the two equations.

Examples

Example 1 Solve the simultaneous equations 3x + y = 5 and x + y = 1

3x + y = 5 $- x + y = 1$ $2x = 4$ So $x = 2$	1 Subtract the second equation from the first equation to eliminate the <i>y</i> term.
Using $x + y = 1$ 2 + y = 1 So $y = -1$	2 To find the value of y , substitute $x = 2$ into one of the original equations.
Check: equation 1: $3 \times 2 + (-1) = 5$ YES equation 2: $2 + (-1) = 1$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 2 Solve x + 2y = 13 and 5x - 2y = 5 simultaneously.

x + 2y = 13 + 5x - 2y = 5 6x = 18 So x = 3	1 Add the two equations together to eliminate the <i>y</i> term.
Using $x + 2y = 13$ 3 + 2y = 13 So $y = 5$	2 To find the value of y, substitute $x = 3$ into one of the original equations.
Check: equation 1: $3 + 2 \times 5 = 13$ YES equation 2: $5 \times 3 - 2 \times 5 = 5$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

$(2x + 3y = 2) \times 4 \rightarrow \qquad 8x + 12y = 8$ $(5x + 4y = 12) \times 3 \rightarrow \qquad 15x + 12y = 36$ $7x = 28$ So $x = 4$	1 Multiply the first equation by 4 and the second equation by 3 to make the coefficient of <i>y</i> the same for both equations. Then subtract the first equation from the second equation to eliminate the <i>y</i> term.
Using $2x + 3y = 2$ $2 \times 4 + 3y = 2$ So $y = -2$	2 To find the value of y , substitute $x = 4$ into one of the original equations.
Check: equation 1: $2 \times 4 + 3 \times (-2) = 2$ YES equation 2: $5 \times 4 + 4 \times (-2) = 12$ YES	3 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 3 Solve 2x + 3y = 2 and 5x + 4y = 12 simultaneously.

Practice

Solve these simultaneous equations.

1	4x + y = 8	2	3x + y = 7
	x + y = 5		3x + 2y = 5
3	4x + y = 3 $3x - y = 11$	4	3x + 4y = 7 $x - 4y = 5$
5	2x + y = 11 $x - 3y = 9$	6	2x + 3y = 11 $3x + 2y = 4$

Solving linear simultaneous equations using the substitution method

A LEVEL LINKS

Scheme of work: 1c. Equations – quadratic/linear simultaneous **Textbook:** Pure Year 1, 3.1 Linear simultaneous equations

Key points

• The subsitution method is the method most commonly used for A level. This is because it is the method used to solve linear and quadratic simultaneous equations.

Examples

Example 4 Solve the simultaneous equations y = 2x + 1 and 5x + 3y = 14

5x + 3(2x + 1) = 14 5x + 6x + 3 = 14 11x + 3 = 14	 Substitute 2x + 1 for y into the second equation. Expand the brackets and simplify.
11x + 5 = 14 11x = 11	3 Work out the value of <i>x</i> .
So $x = 1$	
Using $y = 2x + 1$ $y = 2 \times 1 + 1$ So $y = 3$	4 To find the value of y, substitute $x = 1$ into one of the original equations.
Check: equation 1: $3 = 2 \times 1 + 1$ YES equation 2: $5 \times 1 + 3 \times 3 = 14$ YES	5 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Example 5 Solve 2x - y = 16 and 4x + 3y = -3 simultaneously.

y = 2x - 164x + 3(2x - 16) = -3	 Rearrange the first equation. Substitute 2x - 16 for y into the second equation.
4x + 6x - 48 = -3 10x - 48 = -3	3 Expand the brackets and simplify.
10x = 45 10x = 45 So $x = 4\frac{1}{2}$	4 Work out the value of <i>x</i> .
Using $y = 2x - 16$ $y = 2 \times 4\frac{1}{2} - 16$ So $y = -7$	5 To find the value of y, substitute $x = 4\frac{1}{2}$ into one of the original equations.
Check: equation 1: $2 \times 4\frac{1}{2} - (-7) = 16$ YES equation 2: $4 \times 4\frac{1}{2} + 3 \times (-7) = -3$ YES	6 Substitute the values of <i>x</i> and <i>y</i> into both equations to check your answers.

Solve these simultaneous equations.

7	y = x - 4	8	y = 2x - 3
	2x + 5y = 43		5x - 3y = 11
9	2y = 4x + 5	10	2x = y - 2
	9x + 5y = 22		8x - 5y = -11
11	3x + 4y = 8	12	3y = 4x - 7
	2x - y = -13		2y = 3x - 4
13	3x = y - 1	14	3x + 2y + 1 = 0
	2y - 2x = 3		4y = 8 - x

Extend

15 Solve the simultaneous equations
$$3x + 5y - 20 = 0$$
 and $2(x + y) = \frac{3(y - x)}{4}$.

Answers

- **1** x = 1, y = 4
- **2** x = 3, y = -2
- **3** x = 2, y = -5
- 4 $x = 3, y = -\frac{1}{2}$
- 5 x = 6, y = -1
- **6** x = -2, y = 5
- **7** x = 9, y = 5
- 8 x = -2, y = -7
- 9 $x = \frac{1}{2}, y = 3\frac{1}{2}$
- **10** $x = \frac{1}{2}, y = 3$
- **11** x = -4, y = 5
- **12** x = -2, y = -5
- **13** $x = \frac{1}{4}, y = 1\frac{3}{4}$
- **14** $x = -2, y = 2\frac{1}{2}$
- **15** $x = -2\frac{1}{2}, y = 5\frac{1}{2}$

Linear inequalities

A LEVEL LINKS

Scheme of work: 1d. Inequalities – linear and quadratic (including graphical solutions)

Key points

- Solving linear inequalities uses similar methods to those for solving linear equations.
- When you multiply or divide an inequality by a negative number you need to reverse the inequality sign, e.g. < becomes >.

Examples

Example 1 Solve $-8 \le 4x < 16$

$-8 \le 4x < 16$ $-2 \le x \le 4$	Divide all three terms by 4.

Example 2 Solve $4 \le 5x < 10$

$4 \le 5x < 10$	Divide all three terms by 5.
$\frac{4}{5} \le x < 2$	

Example 3 Solve 2x - 5 < 7

2x-5 < 7	1 Add 5 to both sides.
$\begin{array}{c} 2x < 12 \\ x < 6 \end{array}$	2 Divide both sides by 2.

Example 4 Solve $2 - 5x \ge -8$

$2-5x \ge -8$ $-5x \ge -10$ $x \le 2$	 Subtract 2 from both sides. Divide both sides by -5. Remember to reverse the inequality when dividing by a negative number.

Example 5 Solve 4(x-2) > 3(9-x)

4(x-2) > 3(9-x) 4x-8 > 27 - 3x 7x-8 > 27 7x > 35 x > 5	 Expand the brackets. Add 3x to both sides. Add 8 to both sides. Divide both sides by 7.
<i>x</i> > 5	

1	Solve these inequ	alities.			
	a $4x > 16$	b	$5x-7 \leq 3$	c	$1 \ge 3x + 4$
	d $5-2x < 12$	e	$\frac{x}{2} \ge 5$	f	$8 < 3 - \frac{x}{3}$
2	Solve these inequa	alities.			
	a $\frac{x}{5} < -4$	b	$10 \ge 2x + 3$	c	7 - 3x > -5
3	Solve				
	a $2-4x \ge 18$	b	$3 \le 7x + 10 < 45$	с	$6-2x \ge 4$
	d $4x + 17 < 2 -$	<i>x</i> e	4-5x<-3x	f	$-4x \ge 24$
4	Solve these inequa	alities.			
	a $3t + 1 < t + 6$		b $2(3n-1)$	$) \ge n +$	5
5	Solve.				
	a $3(2-x) > 2(4)$	(1-x) + 4	b $5(4-x)$	> 3(5 -	(-x) + 2

Extend

6 Find the set of values of x for which 2x + 1 > 11 and 4x - 2 > 16 - 2x.

Answers

1	a	x > 4	b	$x \leq 2$	c	$x \leq -1$
	d	$x > -\frac{7}{2}$	e	$x \ge 10$	f	<i>x</i> < –15
2	a	x < -20	b	$x \leq 3.5$	c	<i>x</i> < 4
3	a d	$x \le -4$ $x < -3$	b e	$-1 \le x < 5$ $x > 2$	c f	$x \le 1$ $x \le -6$
4	a	$t < \frac{5}{2}$	b	$n \ge \frac{7}{5}$		
5	a	<i>x</i> < –6	b	$x < \frac{3}{2}$		

6 x > 5 (which also satisfies x > 3)

Straight line graphs

A LEVEL LINKS

Scheme of work: 2a. Straight-line graphs, parallel/perpendicular, length and area problems

Key points

- A straight line has the equation y = mx + c, where m is the gradient and c is the y-intercept (where x = 0).
- The equation of a straight line can be written in the form ax + by + c = 0, where *a*, *b* and *c* are integers.
- When given the coordinates (x₁, y₁) and (x₂, y₂) of two points on a line the gradient is calculated using the

formula
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Examples

Example 1 A straight line has gradient $-\frac{1}{2}$ and y-intercept 3.

Write the equation of the line in the form ax + by + c = 0.

$m = -\frac{1}{2}$ and $c = 3$ So $y = -\frac{1}{2}x + 3$	1 A straight line has equation y = mx + c. Substitute the gradient and y-intercept given in the question into this equation.
$\frac{1}{2}x + y - 3 = 0$	2 Rearrange the equation so all the terms are on one side and 0 is on the other side.
x + 2y - 6 = 0	3 Multiply both sides by 2 to eliminate the denominator.

Example 2 Find the gradient and the *y*-intercept of the line with the equation 3y - 2x + 4 = 0.

3y - 2x + 4 = 0	1 Make <i>y</i> the subject of the equation.
$ \begin{aligned} y &= 2x - 4 \\ y &= \frac{2}{3}x - \frac{4}{3} \end{aligned} $	2 Divide all the terms by three to get the equation in the form $y =$
Gradient = $m = \frac{2}{3}$	3 In the form $y = mx + c$, the gradient is <i>m</i> and the <i>y</i> -intercept is <i>c</i> .
y-intercept = $c = -\frac{4}{3}$	

m = 3 y = 3x + c	1 Substitute the gradient given in the question into the equation of a straight line $y = mx + c$.
$13 = 3 \times 5 + c$ $13 = 15 + c$	 Substitute the coordinates x = 5 and y = 13 into the equation. Simplify and solve the equation.
c = -2 y = 3x - 2	4 Substitute $c = -2$ into the equation y = 3x + c

Example 3 Find the equation of the line which passes through the point (5, 13) and has gradient 3.

Example 4 Find the equation of the line passing through the points with coordinates (2, 4) and (8, 7).

$x_1 = 2, x_2 = 8, y_1 = 4 \text{ and } y_2 = 7$	1 Substitute the coordinates into the
$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 4}{8 - 2} = \frac{3}{6} = \frac{1}{2}$	equation $m = \frac{y_2 - y_1}{x_2 - x_1}$ to work out
	the gradient of the line.
1	2 Substitute the gradient into the
$y = \frac{1}{2}x + c$	equation of a straight line
	y = mx + c.
$4 = \frac{1}{2} \times 2 + c$	3 Substitute the coordinates of either point into the equation.
<i>c</i> = 3	4 Simplify and solve the equation.
$y = \frac{1}{2}x + 3$	5 Substitute $c = 3$ into the equation 1
	$y = \frac{1}{2}x + c$

Practice

1 Find the gradient and the *y*-intercept of the following equations.

a	y = 3x + 5	b	$y = -\frac{1}{2}x - 7$	
c	2y = 4x - 3	d	x + y = 5	Hint Rearrange the equations
e	2x - 3y - 7 = 0	f	5x + y - 4 = 0	to the form $y = mx + c$

2 Copy and complete the table, giving the equation of the line in the form y = mx + c.

Gradient	y-intercept	Equation of the line
5	0	
-3	2	
4	-7	

3 Find, in the form ax + by + c = 0 where a, b and c are integers, an equation for each of the lines with the following gradients and y-intercepts.

a gradient $-\frac{1}{2}$, y-intercept -7 **b** gradient 2, y-intercept 0 **c** gradient $\frac{2}{3}$, y-intercept 4 **d** gradient -1.2, y-intercept -2

- 4 Write an equation for the line which passes though the point (2, 5) and has gradient 4.
- 5 Write an equation for the line which passes through the point (6, 3) and has gradient $-\frac{2}{3}$
- 6 Write an equation for the line passing through each of the following pairs of points.

a	(4, 5), (10, 17)	b	(0, 6), (-4, 8)
c	(-1, -7), (5, 23)	d	(3, 10), (4, 7)

Extend

7 The equation of a line is 2y + 3x - 6 = 0. Write as much information as possible about this line.

Answers

1 a
$$m = 3, c = 5$$

b $m = -\frac{1}{2}, c = -7$
c $m = 2, c = -\frac{3}{2}$
d $m = -1, c = 5$
e $m = \frac{2}{3}, c = -\frac{7}{3}$ or $-2\frac{1}{3}$
f $m = -5, c = 4$

2

Gradient	y-intercept	Equation of the line
5	0	y = 5x
-3	2	y = -3x + 2
4	-7	y = 4x - 7

3 a x + 2y + 14 = 0 **b** 2x - y = 0

c 2x - 3y + 12 = 0 **d** 6x + 5y + 10 = 0

- **4** y = 4x 3
- **5** $y = -\frac{2}{3}x + 7$

6 a y = 2x - 3 **b** $y = -\frac{1}{2}x + 6$

c y = 5x - 2 **d** y = -3x + 19

7 $y = -\frac{3}{2}x + 3$, the gradient is $-\frac{3}{2}$ and the *y*-intercept is 3. The line intercepts the axes at (0, 3) and (2, 0).

Students may sketch the line or give coordinates that lie on the line such as $\left(1, \frac{3}{2}\right)$ or $\left(4, -3\right)$.

Trigonometry in right-angled triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs

Key points

- In a right-angled triangle:
 - the side opposite the right angle is called the hypotenuse
 - the side opposite the angle ϑ is called the opposite
 - the side next to the angle ϑ is called the adjacent.

- In a right-angled triangle:
 - the ratio of the opposite side to the hypotenuse is the sine of angle ϑ , $\sin\theta = \frac{\text{opp}}{\text{hyp}}$
 - the ratio of the adjacent side to the hypotenuse is the cosine of angle ϑ , $\cos\theta = \frac{\text{adj}}{\text{hyp}}$
 - the ratio of the opposite side to the adjacent side is the tangent of angle ϑ , $\tan \theta = \frac{\text{opp}}{\text{adj}}$
- If the lengths of two sides of a right-angled triangle are given, you can find a missing angle using the inverse trigonometric functions: sin⁻¹, cos⁻¹, tan⁻¹.
- The sine, cosine and tangent of some angles may be written exactly.

	0	30°	45°	60°	90°
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tan	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	

Examples

Example 1Calculate the length of side x.
Give your answer correct to 3 significant figures.

Example 2Calculate the size of angle x.Give your answer correct to 3 significant figures.

Example 3 Calculate the exact size of angle *x*.

1 Calculate the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

2 Calculate the size of angle *x* in each triangle. Give your answers correct to 1 decimal place.

3 Work out the height of the isosceles triangle. Give your answer correct to 3 significant figures.

Hint:

Split the triangle into two right-angled triangles.

4 Calculate the size of angle θ . Give your answer correct to 1 decimal place.

Hint:

a

с

First work out the length of the common side to both triangles, leaving your answer in surd form.

5 Find the exact value of *x* in each triangle.

d

The cosine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.1 The cosine rule

Key points

a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.

- You can use the cosine rule to find the length of a side when two sides and the included angle are given.
- To calculate an unknown side use the formula $a^2 = b^2 + c^2 2bc \cos A$.
- Alternatively, you can use the cosine rule to find an unknown angle if the lengths of all three sides are given.
- To calculate an unknown angle use the formula $\cos A = \frac{b^2 + c^2 a^2}{2bc}$.

Examples

Example 4Work out the length of side w.Give your answer correct to 3 significant figures.

Example 5 Work out the size of angle θ . Give your answer correct to 1 decimal place.

6 Work out the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

7 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- 8 a Work out the length of WY. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle WXY. Give your answer correct to 1 decimal place.

The sine rule

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.2 The sine rule

Key points

a is the side opposite angle A.
 b is the side opposite angle B.
 c is the side opposite angle C.

- You can use the sine rule to find the length of a side when its opposite angle and another opposite side and angle are given.
- To calculate an unknown side use the formula $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- Alternatively, you can use the sine rule to find an unknown angle if the opposite side and another opposite side and angle are given.
- To calculate an unknown angle use the formula $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$.

Examples

Example 6 Work out the length of side *x*. Give your answer correct to 3 significant figures.

a

с

9 Find the length of the unknown side in each triangle. Give your answers correct to 3 significant figures.

74 mm 35° (1109

d

10 Calculate the angles labelled θ in each triangle. Give your answer correct to 1 decimal place.

- **11 a** Work out the length of QS. Give your answer correct to 3 significant figures.
 - **b** Work out the size of angle RQS. Give your answer correct to 1 decimal place.

Areas of triangles

A LEVEL LINKS

Scheme of work: 4a. Trigonometric ratios and graphs Textbook: Pure Year 1, 9.3 Areas of triangles

Key points

- *a* is the side opposite angle A. *b* is the side opposite angle B. *c* is the side opposite angle C.
- The area of the triangle is $\frac{1}{2}ab\sin C$.

Examples

Example 8 Find the area of the triangle.

12 Work out the area of each triangle. Give your answers correct to 3 significant figures.

13 The area of triangle XYZ is 13.3 cm². Work out the length of XZ.

Extend

14 Find the size of each lettered angle or side. Give your answers correct to 3 significant figures. 15 The area of triangle ABC is 86.7 cm². Work out the length of BC. Give your answer correct to 3 significant figures.

c

Answers

1	a d	6.49 cm 74.3 mm	b e	6.93 cm 7.39 cm	c f	2.80 cm 6.07 cm		
2	a	36.9°	b	57.1°	c	47.0°	d	38.7°
3	5.71	l cm						
4	20.4	1°						
5	a	45°	b	1 cm	c	30°	d	$\sqrt{3}$ cm
6	a	6.46 cm	b	9.26 cm	c	70.8 mm	d	9.70 cm
7	a	22.2°	b	52.9°	c	122.9°	d	93.6°
8	a	13.7 cm	b	76.0°				
9	a	4.33 cm	b	15.0 cm	c	45.2 mm	d	6.39 cm
10	a	42.8°	b	52.8°	c	53.6°	d	28.2°
11	a	8.13 cm	b	32.3°				
12	a	18.1 cm ²	b	18.7 cm ²	c	693 mm ²		
13	5.10) cm						
14	a	6.29 cm	b	84.3°	c	5.73 cm	d	58.8°

15 15.3 cm